Pengaruh Distribusi Data Terhadap Hasil Uji Korelasi Studi Pada Uji Pearson Product Moment, Rank Spearman, dan Rank Kendall Tau

  • Ratna Yuniarti Institut Teknologi Sosial dan Kesehatan Muhammadiyah Selong
  • Hartiani Hartiani Institut Teknologi Sosial dan Kesehatan Muhammadiyah Selong
  • Harizahayu Harizahayu Politeknik Negeri Medan
Keywords: Distribusi Data, Uji Korelasi Pearson Product Moment, Rank Spearman, Rank Kendall Tau

Abstract

Correlation analysis is used if you want to know whether there is a correlation between two phenomena. To determine the type of correlation to be used, researchers need to consider whether or not the assumption of normality and data characteristics are met. The purpose of this study was to compare the results of the analysis using several correlation tests with both parametric and non-parametric approaches. The method used is to provide data simulation with three types of data characteristics, namely normal, skewed and data containing outliers. The test used is the correlation in the parametric approach with the Pearson Product Moment Test, while for the non-parametric approach is the Spearman Rank and Kendall Tau Rank tests. Furthermore, a case study is given. The results show that in correlation testing without considering data distribution and data characteristics. Can produce inaccurate conclusions.

References

[1] L. C. Guglielmetti, F. Faber-Castell, L. Fink, and R. N. Vuille-dit-Bille, “Statistics decrypted—a comprehensive review and smartphone-assisted five-step approach for good statistical practice,” Langenbecks Arch. Surg., vol. 407, no. 2, pp. 529–540, Mar. 2022, doi: 10.1007/s00423-021-02360-0.
[2] R. E. Walpole, Introduction to Statistics. New York: Mc Millan, 1962.
[3] M. I. Hasan, statistik 2, 2nd ed. JAKARTA: PT BU,MI AKSARA, 2003.
[4] P. Schober, C. Boer, and L. A. Schwarte, “Correlation Coefficients: Appropriate Use and Interpretation,” Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, May 2018, doi: 10.1213/ANE.0000000000002864.
[5] H.-Y. Kim, “Statistical notes for clinical researchers: Nonparametric statistical methods: 2. Nonparametric methods for comparing three or more groups and repeated measures,” Restor. Dent. Endod., vol. 39, no. 4, p. 329, 2014, doi: 10.5395/rde.2014.39.4.329.
[6] G. Norman, “Likert scales, levels of measurement and the ‘laws’ of statistics,” Adv. Health Sci. Educ., vol. 15, no. 5, pp. 625–632, Dec. 2010, doi: 10.1007/s10459-010-9222-y.
[7] N. Minois et al., “Using Poisson–gamma model to evaluate the duration of recruitment process when historical trials are available,” Stat. Med., vol. 36, no. 23, pp. 3605–3620, Oct. 2017, doi: 10.1002/sim.7365.
[8] J. Hauke and T. Kossowski, “Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data,” QUAGEO, vol. 30, no. 2, pp. 87–93, Jun. 2011, doi: 10.2478/v10117-011-0021-1.
[9] M. M. Mukaka, “Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research”.
[10] J. Cohen, Statistical power analysis for the behavioral sciences, 2. ed., Reprint. New York, NY: Psychology Press, 2009.
[11] R. Ridwan, DasarDasar Statistika. in 15. Bandung: ALFABETA, 2018.
[12] S. Sugiyono, Statistika untuk Penelitian. Bandung: ALFABETA, 2016.
[13] A. Supangat, Statistika dalam Kajian Deskriptif, Inferensi, dan Nonparametrik. JAKARTA: Kencana Prenada Media Group, 2010.
Published
2025-06-30
How to Cite
Yuniarti, R., Hartiani, H., & Harizahayu, H. (2025). Pengaruh Distribusi Data Terhadap Hasil Uji Korelasi Studi Pada Uji Pearson Product Moment, Rank Spearman, dan Rank Kendall Tau. UJMC (Unisda Journal of Mathematics and Computer Science), 11(1), 9-16. https://doi.org/https://doi.org/10.52166/ujmc.v11i1.9439