Analisis Sentimen Publik terkait Migrasi Tenaga Kerja Indonesia di Platform X menggunakan SVM-IndoBERT

  • Ata Amrullah Universitas Islam Darul Ulum Lamongan
Keywords: Support Vector Machine, indoBERT, Hyperparameter Tuning, #KaburAjaDulu, Sentiment Analysis

Abstract

Diverse public opinions on social and economic issues related to labor migration are often expressed on the social media platform X (Twitter). This research aims to classify public sentiment toward this phenomenon by analyzing tweets containing the hashtag "#KaburAjaDulu". Sentiment classification is performed by comparing two Support Vector Machine (SVM) approaches that utilize indoBERT embeddings, a language model designed to capture the nuances of the Indonesian language. Both SVM models are trained using web crawling data from the X platform, with the main difference lying in the application of hyperparameter tuning on one of the models. The data collected through web crawling from the X platform then undergoes a pre-processing stage that includes text normalization and stopword removal. The results show that the SVM model optimized through hyperparameter tuning achieved an accuracy of 90.5%, higher than the SVM model without tuning which achieved only 77.7%. This finding underscores the importance of hyperparameter tuning in improving the performance of sentiment classification models, especially when utilizing rich feature representations such as indoBERT embeddings to understand deeper language context.

References

[1] N. R. Ram, S. Gautum, A. Jadeja, H. Joisar, and N. Rathore, “Social Media Sentiment Analysis Using Twitter Dataset,” in 2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU), 2024, pp. 1–5. doi: 10.1109/IC-CGU58078.2024.10530694.
[2] H. Al Rochmanto, H. Brilianti and Azies, “Klasifikasi Opini Publik terhadap Kenaikan PPN 12% di Platform X menggunakan Multinomial Naïve Bayes,” Unisda J. Math. Comput. Sci., vol. 10, no. 2, pp. 57–66, 2024, [Online]. Available: https://e-jurnal.unisda.ac.id/index.php/ujmc/article/view/9120
[3] A. Amrullah, “Advanced Sentiment Analysis Using Deep Learning: A Comprehensive Framework for High-Accuracy and Interpretable Models,” Intellithings J., vol. 1, no. 1, pp. 21–31, 2025, [Online]. Available: https://e-jurnal.unisda.ac.id/index.php/intellithings/article/view/8972
[4] M. M. Henry, N. A. Hervanto, M. Isnan, D. Kurnianingrum, C. I. Ratnapuri, and B. Pardamean, “LLM2Vec Sentence Embeddings Analysis in Sentiment Classification,” in 2024 IEEE International Conference on Data and Software Engineering (ICoDSE), 2024, pp. 161–165. doi: 10.1109/ICoDSE63307.2024.10829901.
[5] C. T. Akpinar, Ö. Koşar, and A. Durdu, “Enhancing the Performance of Machine Learning Classification Models,” in 2025 24th International Symposium INFOTEH-JAHORINA (INFOTEH), 2025, pp. 1–6. doi: 10.1109/INFOTEH64129.2025.10959301.
[6] S. Saadah, Kaenova Mahendra Auditama, Ananda Affan Fattahila, Fendi Irfan Amorokhman, Annisa Aditsania, and Aniq Atiqi Rohmawati, “Implementation of BERT, IndoBERT, and CNN-LSTM in Classifying Public Opinion about COVID-19 Vaccine in Indonesia,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 648–655, 2022, doi: 10.29207/resti.v6i4.4215.
[7] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-Validation,” in Encyclopedia of Database Systems, L. LIU and M. T. ÖZSU, Eds., Boston, MA: Springer US, 2009, pp. 532–538. doi: 10.1007/978-0-387-39940-9_565.
[8] C. Amanda, I. Jaya, and D. Arisandi, “Identification of Sexual Harassment in Social Media Comments Using IndoBERT and Support Vector Machine,” in 2024 8th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 2024, pp. 42–45. doi: 10.1109/ELTICOM64085.2024.10864968.
[9] S. P. Andinny and E. B. Setiawan, “Sentiment Analysis on 2024 Regional Elections using Hybrid CNN-SVM with Semantic Features and Word2Vec,” in 2025 International Conference on Advancement in Data Science, E-learning and Information System (ICADEIS), 2025, pp. 1–7. doi: 10.1109/ICADEIS65852.2025.10933385.
[10] A. B. Y. A. Putra, Y. Sibaroni, and A. F. Ihsan, “Disinformation Detection on 2024 Indonesia Presidential Election using IndoBERT,” in 2023 International Conference on Data Science and Its Applications (ICoDSA), 2023, pp. 350–355. doi: 10.1109/ICoDSA58501.2023.10277572.
[11] D. S. Asudani, N. K. Nagwani, and P. Singh, “Impact of word embedding models on text analytics in deep learning environment: a review,” Artif. Intell. Rev., vol. 56, no. 9, pp. 10345–10425, 2023, doi: 10.1007/s10462-023-10419-1.
[12] L. B. Purbey and K. Lakhwani, “Aspect-based sentimental analysis using optimized multi-layered deep BiLSTM classifier,” Knowledge-Based Syst., vol. 324, p. 113832, 2025, doi: https://doi.org/10.1016/j.knosys.2025.113832.
Published
2025-06-30
How to Cite
Amrullah, A. (2025). Analisis Sentimen Publik terkait Migrasi Tenaga Kerja Indonesia di Platform X menggunakan SVM-IndoBERT. UJMC (Unisda Journal of Mathematics and Computer Science), 11(1), 53-63. https://doi.org/https://doi.org/10.52166/ujmc.v11i1.9891