Klasifikasi Opini Publik terhadap Kenaikan PPN 12% di Platform X menggunakan Multinomial Naïve Bayes

  • Hani Brilianti Rochmanto Universitas PGRI Adi Buana Surabaya
  • Harun Al Azies Universitas Dian Nuswantoro

Abstract

The increase in Value-Added Tax to 12% in 2025 has sparked diverse public opinions on the social media platform X (Twitter). This study aims to classify public sentiment toward the policy using Multinomial Naïve Bayes with a Term Frequency-Inverse Document Frequency (TF-IDF) approach. Multinomial Naïve Bayes is a probabilistic classification algorithm that assumes feature independence. Data were collected through web crawling using the keyword "ppn 12%" and underwent pre-processing, including text normalization, stopword removal, and stemming. To address class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was applied. The best-performing model was obtained by tuning the alpha hyperparameter to 0.01, achieving an average accuracy of 83.37%, precision of 83.32%, recall of 83.38%, and an F1-score of 82.99% using 10-fold cross-validation. The findings indicate that Multinomial Naïve Bayes, combined with SMOTE and hyperparameter tuning, effectively classifies public sentiment and provides insights into public responses regarding the Value-Added Tax policy.

References

[1] Lala Febiola and Hasnawati, “ANALISA PERSEPSI WAJIB PAJAK ORANG PRIBADI TERHADAP KEBIJAKAN KENAIKAN TARIF PAJAK PERTAMBAHAN NILAI MENJADI 12% DI TAHUN 2025,” Journal of Social and Economics Research, vol. 6, no. 1, pp. 1863–1876, Aug. 2024, doi: 10.54783/jser.v6i1.543.
[2] K. Fatha Rabani et al., “Analisis Statistik Pengaruh Kenaikan PPN Tahun 2025 Terhadap Harga Permintaan, Kondisi Pasar dan Sosial Ekonomi Indonesia,” JISMA: Jurnal Ilmu Sosial, Manajemen, dan Akuntansi, vol. 3, no. 2, pp. 1315–1322, Jun. 2024. Available: https://melatijournal.com/index.php/jisma/article/view/546
[3] H. Hajatina and U. Hasanah, “Analisis Dampak Kenaikan Tarif Pajak Pertambahan Nilai (PPN) Terhadap Perilaku Konsumsi Dan Kesejahteraan Masyarakat Di Indonesia,” JURNAL MANAJEMEN DAN BISNIS, vol. 3, no. 2, pp. 36–51, Dec. 2024, doi: 10.36490/JMDB.V3I2.1452.
[4] P. Kenaikan Pajak Pertambahan Nilai Terhadap Pendapatan Wajib Pajak Badan Usaha di Kota Metro Era Yudistira and T. Nisa, “Pengaruh Kenaikan Pajak Pertambahan Nilai (PPN) Terhadap Pendapatan Wajib Pajak Badan Usaha di Kota Metro,” Innovative: Journal Of Social Science Research, vol. 4, no. 3, pp. 8090–8104, May 2024, doi: 10.31004/INNOVATIVE.V4I3.10872.
[5] M. Kholilullah, M. Martanto, and U. Hayati, “ANALISIS SENTIMEN PENGGUNA TWITTER(X) TENTANG PIALA DUNIA USIA 17 MENGGUNAKAN METODE NAIVE BAYES,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 392–398, Feb. 2024, doi: 10.36040/JATI.V8I1.8378.
[6] A. Mukti, A. D. Hadiyanti, A. Nurlaela, and J. Panjaitan, “Sistem Analisa Sentiment Bakal Calon Presiden 2024 Menggunakan Metode NLP Berbasis Web,” SOSCIED, vol. 6, no. 1, pp. 128–140, Jun. 2023, doi: 10.32531/JSOSCIED.V6I1.621.
[7] H. Leidiyana, T. Misriati, and R. Aryanti, “Klasifikasi Sentimen Terhadap Kebijakan Tapera Menggunakan Komparasi Machine Learning dan SMOTE,” Jurnal Komtika (Komputasi dan Informatika), vol. 8, no. 2, pp. 125–135, Nov. 2024, doi: 10.31603/KOMTIKA.V8I2.12595.
[8] S. Shevira, I. Made, A. D. Suarjaya, and P. Wira Buana, “Pengaruh Kombinasi dan Urutan Pre-Processing pada Tweets Bahasa Indonesia,” 2022.
[9] C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis Sentimen Pada Rating Aplikasi Shopee Menggunakan Metode Decision Tree Berbasis SMOTE,” AITI, vol. 18, no. 2, pp. 173–184, Nov. 2021, doi: 10.24246/aiti.v18i2.173-184.
[10] A. A. ZD, Kusrini, and A. D. Hartanto, “ANALISIS SENTIMEN PEMINDAHAN IBU KOTA NEGARA (IKN) MENGGUNAKAN METODE OVERSAMPLING SYNTHETIC MINORITY (SMOTE),” Jurnal INSTEK (Informatika Sains dan Teknologi), vol. 9, no. 2, pp. 324–335, Dec. 2024, doi: 10.24252/INSTEK.V9I2.50944.
[11] A. E. Widjaja, A. Fransisko, C. A. Haryani, and Hery, “Text Mining Application with K-Means Clustering to Identify Sentiments and Popular Topics: a Case Study of the three Largest Online Marketplaces in Indonesia,” Journal of Applied Data Sciences, vol. 4, no. 4, pp. 441–453, Dec. 2023, doi: 10.47738/jads.v4i4.134.
[12] H. Al Azies, H. B. Rochmanto, C. A. Pravesti, and F. Fitriani, “Integrating counseling with technology: An evaluation of the Bicarakan.id application through user review analysis with machine learning,” KONSELI : Jurnal Bimbingan dan Konseling (E-Journal), vol. 11, no. 2, pp. 205–218, Nov. 2024. Available: https://ejournal.radenintan.ac.id/index.php/konseli/article/view/24357
[13] S. Keputusan Dirjen Penguatan Riset dan Pengembangan Ristek Dikti, N. Hidayah, S. Sahibu, M. Sistem Komputer, and S. Handayani Makassar, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 820–826, Aug. 2021, doi: 10.29207/RESTI.V5I4.3146.
[14] T. Ernayanti, A. Rusgiyono, A. Rachman Hakim, D. Statistika, F. Sains dan Matematika, and U. Diponegoro, “PENGGUNAAN SELEKSI FITUR CHI-SQUARE DAN ALGORITMA MULTINOMIAL NAÏVE BAYES UNTUK ANALISIS SENTIMEN PELANGGGAN TOKOPEDIA,” Jurnal Gaussian, vol. 11, no. 4, pp. 562–571, Feb. 2023, doi: 10.14710/J.GAUSS.11.4.562-571.
[15] T. Ridwansyah, “Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 2, no. 5, pp. 178–185, Apr. 2022, doi: 10.30865/KLIK.V2I5.362.
[16] K. Wabang, O. D. Nurhayati, and Farikhin, “Application of The Naïve Bayes Classifier Algorithm to Classify Community Complaints,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 5, pp. 872–876, Nov. 2022, doi: 10.29207/RESTI.V6I5.4498.
[17] A. P. Randika Setiawan, B. Setya Rintyama, and T. Adi Cahyanto, “Preferensi Konsumen Terhadap Produk By.U Dan MPWR Dengan Analisis Sentimen Berbasis Multinomial Naïve Bayes Consumer Preferences On By.U And MPWR Products Using Sentimen Analysis Based On Multinomial Naïve Bayes,” 2021. Available: http://jurnal.unmuhjember.ac.id/index.php/JST
[18] M. P. Pulungan, A. Purnomo, and A. Kurniasih, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Kepribadian MBTI Menggunakan Naive Bayes Classifier,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 5, pp. 1033–1042, Oct. 2024, doi: 10.25126/jtiik.1077989.
Published
2024-12-31
How to Cite
Rochmanto, H., & Al Azies, H. (2024). Klasifikasi Opini Publik terhadap Kenaikan PPN 12% di Platform X menggunakan Multinomial Naïve Bayes. UJMC (Unisda Journal of Mathematics and Computer Science), 10(2), 57-66. https://doi.org/https://doi.org/10.52166/ujmc.v10i2.9120