Aplikasi Petrinet Pada Sistem Antrian Servis Produk Barang

  • Ahmad Afif Institut Ilmu Kesehatan Bhakti Wiyata Kediri
Keywords: petri net, product service, PIPE

Abstract

Queueing systems are a critical element in the operational management of service processes for goods, such as repairs, warranty claims, or product replacements. Efficient queue management can enhance productivity, reduce customer waiting times, and provide a better service experience. This study aims to apply petri nets to model the queueing system for product service processes. The resulting model, comprising five places and six transitions, was evaluated through simulation using the PIPE software and further analyzed with max-plus algebra. This analysis produced matrix equations capable of estimating service times and the duration of the queueing process until completion, thereby expected to improve the efficiency and quality of service in the queueing system.

References

[1] D. Setiawati, "Analisis Sistem Antrian Pada Customer Service Representative (CSR) Menggunakan Model Multichannel Single Phase (Studi Kasus: Plasa Telkom Cilacap)," Universitas Nahdlatul Ulama Al Ghazali, Cilacap, 2023.
[2] S. Komsiyah, "Model Petri Net Tak Berwaktu Pada Sistem Produksi (Batch Plant) Dan Simulasinya Dengan PIPE2," Matstat, pp. 152-164, 2012.
[3] Subiono, Aljabar Min-Max Plus dan Terapannya, Surabaya: ITS Surabaya, 2015.
[4] D. Mustofani and A. Afif, "Model Antrian Pelayanan Farmasi Menggunakan Petri Net Dan Aljabar Max-plus," JMPM : Jurnal Matematika dan Pendidikan Matematika, pp. 33-43, 2018.
[5] A. Afif and D. Mustofani, "Model Rantai Pasok Pada Sistem Produksi Menggunakan Petri Net dan Aljabar Max Plus," UJMC : Unisda Journal Mathematics and Computer Science, pp. 1-9, 2019.
[6] A. Afif, "Model Antrian Servis Handphone Menggunakan Petri Net dan Aljabar Max-Plus," UJMC : Unisda Journal Mathematics and Computer Science, pp. 78-84, 2024.
Published
2024-12-30
How to Cite
Afif, A. (2024). Aplikasi Petrinet Pada Sistem Antrian Servis Produk Barang. UJMC (Unisda Journal of Mathematics and Computer Science), 10(2), 42-47. https://doi.org/https://doi.org/10.52166/ujmc.v10i2.8645