Peramalan Harga Emas Antam Menggunakan Metode Generalized Autoregressive Conditional Heterokedasticity (GARCH)

  • Ihsan Fathoni Amri Prodi Sains Data Universitas Muhammadiyah Semarang
  • Sofi Anggi Astuti Prodi Statistika Universitas Muhammadiyah Semarang
  • Indah Sulistiya Prodi Statistika Universitas Muhammadiyah Semarang
  • Andri Suherdi Prodi Statistika Universitas Muhammadiyah Semarang
  • M.Al Haris Prodi Statistika Universitas Muhammadiyah Semarang
Keywords: Harga Emas, Peramalan, GARCH

Abstract

ANTAM gold is a long-term inflation-resistant investment instrument with a low-risk profile. Socio-economic conditions greatly influence gold price fluctuations, so gold price forecasting is very important for investors to understand the dynamic of changes in gold price. This study proposes the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) methods to model the forecasting of gold price fluctuations. The data used is ANTAM’s daily gold price data for the period June 2018 – June 2023. The results show that by using the best ARIMA (0,1,1) GARCH (2,1) model, the gold price forecasting results are in the price range of Rp 947.100.

References

[1] Ermawati, Nurzarina, and K. Nurfadila, “Pemodelan Beban Puncak Energi Listrik Menggunakan Model Gjr-Garch,” J. MSA ( Mat. dan Stat. serta Apl. ), vol. 6, no. 1, pp. 27–34, 2018, doi: 10.24252/msa.v6i1.5123.
[2] D. N. Ahsanah, “Emas Sebagai Instrumen Investasi Jangka Panjang,” J. Kaji. Ekon. Huk. Syariah, vol. 8, no. 1, pp. 177–187, 2022.
[3] U. Chasanah, “Analisis Model ARIMA pada Forecasting Harga Emas di Masa Ketidakpastian Ekonomi Global (Studi Kasus PT. Aneka Tambang Tbk),” Universitas Islam Negeri Walisongo Semarang, 2021.
[4] M. Al Haris and P. R. Arum, “Peramalan Harga Emas Dengan Model Generalized Autoregressive Conditional Heteroscedasticity (Garch),” J. Saintika Unpam J. Sains dan Mat. Unpam, vol. 3, no. 1, pp. 19–30, 2020, doi: 10.32493/jsmu.v3i1.5263.
[5] A. T. Salawudeen, M. B. Mu’Azu, E. A. Adedokun, and B. A. Baba, “Optimal determination of hidden Markov model parameters for fuzzy time series forecasting,” Sci. African J., vol. 16, p. e01174, 2022, doi: 10.1016/j.sciaf.2022.e01174.
[6] P. H. RS Faustina, A Agoestanto, “Model Hybrid ARIMA-GARCH Untuk Estimasi Volatilitas harga Emas,” UNNES J. Math., vol. 6, no. 1, pp. 11–24, 2017.
[7] P. Otto, W. Schmid, and R. Garthoff, “Generalised spatial and spatiotemporal autoregressive conditional heteroscedasticity,” Spat. Stat., vol. 26, pp. 125–145, 2018, doi: https://doi.org/10.1016/j.spasta.2018.07.005.
[8] A. Hasan, “Peramalan harga emas menggunakan pengukuran volatilitas model GARCH,” SEIKO  J. Manag. Bus., vol. 2, no. 2, pp. 157–173, 2019.
[9] A. P. Desvina and N. Rahmah, “Penerapan Metode ARCH / GARCH dalam Peramalan Indeks Harga Saham Sektoral,” J. Sains Mat. dan Stat., vol. 2, no. I, pp. 1–10, 2016.
[10] F. T. A. Putri, E. Zukhronah, and H. Pratiwi, “Model ARIMA-GARCH Pada Peramalan Harga Saham PT. Jasa Marga (Persero),” Bus. Innov. Entrep. J., vol. 3, no. 3, pp. 164–170, Aug. 2021, doi: 10.35899/biej.v3i3.308.
[11] A. H. Hutasuhut, W. Anggraeni, and R. Tyasnurita, “Pembuatan Aplikasi Pendukung Keputusan Untuk Peramalan Persediaan Bahan Baku Produksi Plastik Blowing dan Inject Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average) Di CV. Asia,” J. Tek. POMITS, vol. 3, no. 2, p. A-169-A-174, 2014, doi: http://dx.doi.org/10.12962/j23373539.v3i2.8114.
[12] T. Nyoni, “Modeling and Forecasting Inflation in Kenya : Recent Insights From Arima and GARCH Analysis,” vol. 5, no. 6, pp. 16–40, 2018.
[13] E. D. A. Prahastini, N. E. Chandra, and A. M. Rohmah, “Penerapan Double Exponential Smoothing Holtdan ARIMA pada Jumlah Kebutuhan GabahUD Lancar,” UJMC (Unisda J. Math. Comput. Sci., vol. 7, no. 2, pp. 31–38, 2021, doi: https://doi.org/10.52166/ujmc.v7i2.2761.
[14] M. Fathurahman, “Pemilihan Model Regresi Terbaik Menggunakan Metode Akaike’s Information Criterion dan Schwarz Information Criterion,” J. Inform. Mulawarman, vol. 4, no. 3, pp. 37–41, 2009.
[15] P. Y. Ping, N. H. Miswan, and M. H. Ahmad, “Forecasting malaysian gold using GARCH model,” Appl. Math. Sci., vol. 7, no. 57–60, pp. 2879–2884, 2013, doi: 10.12988/ams.2013.13255.
Published
2024-06-25
How to Cite
Amri, I., Astuti, S., Sulistiya, I., Suherdi, A., & Haris, M. (2024). Peramalan Harga Emas Antam Menggunakan Metode Generalized Autoregressive Conditional Heterokedasticity (GARCH). UJMC (Unisda Journal of Mathematics and Computer Science), 10(1), 26 - 35. https://doi.org/https://doi.org/10.52166/ujmc.v10i1.4679