Model Matematika Perencanaan dan Pengadaan Obat di Instalasi Farmasi Rumah Sakit dengan Menggunakan Aljabar Max Plus
Abstract
In pharmaceutical installations, drugs need to be managed in order to facilitate and speed up services where the management is a series of activities including planning, procuring, storing, and distributing. Planning in the management of pharmaceutical installations is the main thing that needs to be considered, this is because planning is a determinant of success for subsequent activities. In addition, to avoid drug shortages, more careful planning must be carried out. The purpose of this research is to make Petri Net and Max Plus Algebra models which are useful for managing scheduling planning and procurement of oral drugs in Hospital Pharmacy Installations. The data used in this study is secondary data from the results of records in the Pharmacy Installation of the Dental and Oral Hospital, Bhakti Wiyata Health Sciences Institute in 2021. The results obtained from Petri Net are the Max Plus Algebra model which shows the maximum time for ordering oral drugs. so that drug vacancies in a hospital can be avoided. Conclusions and suggestions from the results of this study obtained a mathematical model that aims to provide convenience in planning and procurement of drugs in hospital installations so that they are on time and do not experience delays in drug procurement.
Dalam instalasi farmasi obat perlu dikelola agar memudahkan dan mempercepat pelayanan dimana pengelolahannya merupakan sebuah rangkaian kegiatan diantaranya adalah merencanakan, mengadakan, menyimpan, dan mendistribusikan. Perencanaan dalam pengelolahan instalasi farmasi merupakan hal utama yang perlu diperhatikan, hal ini dikarenakan perencanaan merupakan penentu keberhasilan untuk kegiatan selanjutnya. Selain itu untuk menghindari terjadinya kekosongan obat, harus dilakukan perencanaan yang lebih teliti. Tujuan penelitian ini adalah membuat Petri Net dan model Aljabar Max Plus yang berguna untuk mengatur penjadwalan perencanaan dan pengadaan obat oral di Instalasi Farmasi Rumah Sakit. Data yang digunakan dalam penelitian ini adalah data sekunder dari hasil pencatatan yang ada di Instalasi Farmasi Rumah Sakit Gigi dan Mulut Institut Ilmu Kesehatan Bhakti Wiyata pada tahun 2021. Hasil yang diperoleh dari Petri Net tersebut adalah model Aljabar Max Plus yang menunjukkan waktu maksimum pemesanan obat oral sehingga kekosongan obat di suatu Rumah Sakit dapat terhindari. Kesimpulan dan saran dari hasil penelitian ini diperoleh model matematika yang bertujuan untuk memberikan kemudahan dalam perencanaan dan pengadaan obat di instalasi Rumah Sakit agar tepat waktu dan tidak mengalami keterlambatan dalam pengadaan obat.
References
[2] P. I. Listyorini, "Perencanaan dan Pengendalian Obat Generk dengan Metode Analisis ABC, EOQ dan ROF," INFOKES, vol. 5(2), pp. 19-25, 2016.
[3] W. P. Sierliawati, Rancangan dan Analisis Penjadwalan Distribusi Pada Rantai Pasok Bahan Bakar Minyak Menggunakan Pendekatan Petri Net dan Aljabar Max-Plus, Surabaya: Intitut Teknologi Sepuluh Nopember, 2012.
[4] A. afif, "Model Rantai Pasok Pada Sistem Produksi Menggunakan Petri Net dan Aljabar Max Plus," UJMC, vol. 05, no. 01, 2019.
[5] D. Mustofani, "Model Antrian Pelayanan farmasi Menggunakan Petri Net dan Aljabar Max-Plus," Jurnal Matematika dan Pendidikan Matematika, vol. 03, p. 1, 2018.
[6] Subiono, Aljabar Maxplus dan Terapannya, Surabaya: Institut Teknologi Sepuluh Nopember, 2012.
[7] D. Adzkiya, Membangun Model Petri Net Lampu Lampu Lalu Lintas dan Simulasinya, Surabaya: Institut Teknologi Sepuluh Nopember.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in UJMC (Unisda Journal of Mathematics and Computer Science) agree to the following terms:
1.Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.