Pemodelan Run Up Tsunami Selat Sunda Menggunakan Smoothed Particle Hydrodynamics (SPH)

  • Ananda Nur Izza Universitas Islam Negeri Sunan Ampel
  • Desy Nur Fitriani Universitas Islam Negeri Sunan Ampel
  • Thalia Anindya Ardine Universitas Islam Negeri Sunan Ampel
  • Dian Candra Rini Novitasari Universitas Islam Negeri Sunan Ampel https://orcid.org/0000-0003-1593-6808
Keywords: Bathymetry, Propagation, Run Up, Smoothed Particle Hydrodynamics, Sunda Strait Tsunami

Abstract

The tsunami that occurred in the Sunda Strait in December 2018 caused extensive damage in the coastal areas of Banten and Lampung. This event was triggered by the collapse of Mount Anak Krakatau, which suddenly displaced water masses without being preceded by a tectonic earthquake, so its generation mechanism differs from that of a typical tsunami. In this study, the Smoothed Particle Hydrodynamics (SPH) method was used, utilizing Sunda Strait bathymetry data to construct a simulation domain, while the tsunami source was represented by fluid deformation around Mount Anak Krakatau. This study aimed to model the propagation and run-up of the tsunami to understand the distribution of the resulting wave energy. The simulation results showed that the tsunami waves tended to propagate northeast and southeast, with a high energy concentration towards the coasts of Banten and Lampung. Although limitations in particle resolution and numerical parameters made run-up values ​​less accurate, the SPH method was able to qualitatively describe the fluid dynamics at the wave generation and propagation stages. This approach shows potential as a tool for studying the characteristics of non-tectonic tsunamis and supporting disaster mitigation efforts in coastal areas.

References

[1] M. Ichsan, E. Wijaya, M. R. Mahendra, and F. A. Alfarouk, “Pengelompokan Data Wilayah Rawan Bencana Alam di Pulau Jawa,” Jun. 2024, doi: 10.61132/neptunus.v2i3.181.
[2] G. J. H. Marbun, M. B. Susetyarto, and S. Tundono, “Struktur dan konstruksi tahan gempa sebagai gagasan eksplorasi bentuk bangunan pusat evakuasi,” Deleted Journal, Feb. 2024, doi: 10.51616/teksi.v5i1.512.
[3] D. Sugawara, “Trigger mechanisms and hydrodynamics of tsunamis,” 2020, doi: 10.1016/B978-0-12-815686-5.00004-3.
[4] J. S. do Carmo, “Tsunamis: geração e riscos,” 2000, doi: 10.14195/1647-7723_7_2.
[5] P. Xie and Y. Du, “Tsunami wave generation in Navier–Stokes solver and the effect of leading trough on wave run-up,” Coast. Eng., 2023, doi: 10.1016/j.coastaleng.2023.104293.
[6] D. Sugawara, “Trigger mechanisms and hydrodynamics of tsunamis,” 2020. doi: 10.1016/B978-0-12-815686-5.00004-3.
[7] R. Subekti, Pemetaan Batimetri sekitar Gunung Anak Krakatau di Perairan Selat Sunda menggunakan Multibeam Echosounder, Undergraduate Thesis, Institut Pertanian Bogor, 2020. Online: https://repository.ipb.ac.id/handle/123456789/104378.
[8] A. Amirudin and others, “Numerical modeling of tsunami inundation in West Sumatra using TUNAMI-N2 model,” J. Geofis. Indones., vol. 19, no. 2, pp. 45–62, 2021 M. R. Amirudin, D. Pujiastuti, and M. R. Agfustian, “Analisis Model Gelombang Tsunami di Kabupaten Pesisir Selatan Sumatera Barat”, JFU, vol. 10, no. 3, pp. 384–391, Oct. 2021, doi: https://doi.org/10.25077/jfu.10.3.384-391.2021.
[9] R. Priadi, D. Yunus, B. Yonanda, and R. Margiono, “Analysis of Tsunami Inundation due in Pangandaran Tsunami Earthquake in South Java Area Based on Finite Faults Solutions Model”, J. Penelit. Fis. Apl., vol. 10, no. 2, pp. 114–124, Dec. 2020, doi: https://doi.org/10.26740/jpfa.v10n2.p114-124.
[10] A. Ardiansyah and D. R. S. Sumunar, “Flood Vulnerability Mapping Using Geographic Information System (GIS) in Gajah Wong Sub Watershed, Yogyakarta County Province,” Apr. 2020, doi: 10.19184/GEOSI.V5I1.9959.
[11] J. J. Monaghan, “Smoothed Particle Hydrodynamics,” Reports Prog. Phys., vol. 68, no. 8, pp. 1703–1759, 2005, doi: 10.1088/0034-4885/68/8/R01.
[12] R. Wahyudi, S. Annas, and Z. Rais, “Analisis Support Vector Regression (Svr) Untuk Meramalkan Indeks Kualitas Udara Di Kota Makassar,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 5, no. 3, pp. 104–117, 2023, doi: 10.35580/variansiunm107.
[13] P. Angerman, S. Kumar, R. Seto, B. Sandnes, and M. Ellero, “Microstructural smoothed particle hydrodynamics model and simulations of discontinuous shear-thickening fluids,” Phys. Fluids, 2023, doi: 10.1063/5.0188444.
[14] W. Hu, W. Pan, M. Rakhsha, Q. Tian, H. Hu, and D. Negrut, “A consistent multi-resolution smoothed particle hydrodynamics method,” Comput. Methods Appl. Mech. Eng., vol. 324, pp. 278–299, 2017, doi: 10.1016/j.cma.2017.06.010.
[15] C. Altomare, B. Tagliafierro, J. M. Dominguez, T. Suzuki, and G. Viccione, “Improved relaxation zone method in SPH-based model for coastal engineering applications,” Applied Ocean Research, vol. 81, pp. 15–27, 2018, doi: 10.1016/j.apor.2018.09.013.
[16] D. Violeau and B. D. Rogers, “Smoothed Particle Hydrodynamics (SPH) for free-surface flows: Past, present and future,” J. Hydraul. Res., vol. 50, no. 1, pp. 1–26, 2012, doi: 10.1080/00221686.2011.637559.
[17] T. Yasuda, I. Tanno, T. Hashimoto, K. Moriishi, and N. Satofuka, “Artificial compressibility method using bulk viscosity term for an unsteady incompressible flow simulation,” Computers & Fluids, Apr. 2023, doi: 10.1016/j.compfluid.2023.105885.
[18] X. Chang and P. R. Wellens, “A generating-absorbing boundary condition for simulating waves using SPH,” Comput. \& Fluids, vol. 278, p. 106095, 2024, doi:https://doi.org/10.1016/j.compfluid.2024.106216.
[19] T. Verbrugghe, C. Altomare, A. J. C. Crespo, J. M. Domínguez, M. Gómez-Gesteira, and P. Troch, “Implementation of open boundaries within a two-way coupling (FNPF-SPH) model for wave interaction,” Energies, vol. 12, no. 4, p. 697, 2019, doi: 10.3390/en12040697.
Published
2025-12-31
How to Cite
Izza, A., Fitriani, D., Ardine, T., & Novitasari, D. C. (2025). Pemodelan Run Up Tsunami Selat Sunda Menggunakan Smoothed Particle Hydrodynamics (SPH). UJMC (Unisda Journal of Mathematics and Computer Science), 11(2), 53-65. https://doi.org/https://doi.org/10.52166/ujmc.v11i2.11435