Pencacah Bobot Lengkap dari Kode Ternari

  • Diana Putri Prahasti Universitas Nurul Jadid
  • Nur Hamid Universitas Nurul Jadid
Keywords: ternary code, self-dual, complete weight enumerator

Abstract

This paper presents the explicit forms of complete weight enumerators (CWEs) for ternary self-dual codes of lengths 4, 8, 12, 16, and 20. Complete weight enumerators polynomials describe the distribution of the symbols 0, 1, and 2 in each codeword, making them essential for analyzing non-binary codes. The results focus on the complete weight enumerators polynomials that form a basis for each code. This documentation serves as a concrete reference for further research in ternary code theory.

References

[1] MacWilliams, F. J. and Sloane, N. J. A., The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1977.
[2] Xu, G., Cao, X., Xu, S., and Ping, J., Complete weight enumerators of a class of linear codes with two weights, Discrete Mathematics, Vol. 341, pp. 525–535, 2018.
[3] Kong, X. and Yang, S., Complete weight enumerators of a class of linear codes with two or three weights, Discrete Mathematics, Vol. 342, pp. 3166–3176, 2019.
[4] Yang, S., Kong, X., and Shi, X., Complete weight enumerators of a class of linear codes over finite fields, Advances in Mathematics of Communications, Vol. 15, No. 1, pp. 99–112, 2021.
[5] Qiu, D., Ma, F., Gao, J., and Li, J., Complete weight enumerator of torsions and their applications, Mathematics, Vol. 13, Article 1165, 2025.
[6] Munemasa, A., Self-Dual Codes over GF(3), Misc, tanpa tahun, tersedia secara daring: \texttt{https://www.math.is.tohoku.ac.jp/\textasciitilde munemasa/research/codes/sd3.htm} (diakses 12-Mar-2025).
[7] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.0.0), 2020, tersedia secara daring: \texttt{https://www.sagemath.org}
[8] Hamid, N., Note on E-Polynomials Associated to Z4-Codes, Nihonkai Mathematical Journal, Vol. 30, pp. 31–40, 2019.
Published
2025-12-31
How to Cite
Prahasti, D. P., & Hamid, N. (2025). Pencacah Bobot Lengkap dari Kode Ternari. UJMC (Unisda Journal of Mathematics and Computer Science), 11(2), 1-7. https://doi.org/https://doi.org/10.52166/ujmc.v11i2.10134