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Abstract 

The rapid integration of the Industrial Internet of Things (IIoT) into 

industrial control systems (ICS) has greatly improved automation and 

operational efficiency, but it has also introduced new cybersecurity risks 

for critical infrastructure. Distributed Denial of Service (DDoS) attacks, 

in particular, pose a significant threat by potentially disrupting real-time 

operations, compromising safety, and causing physical damage. 

Traditional centralized methods for mitigating DDoS attacks often do not 

meet the low-latency, high-reliability, and resource-constrained 

requirements of IIoT environments. To address these challenges, this 

paper proposes a lightweight, edge-based security system specifically 

designed for real-time DDoS mitigation in IIoT infrastructures. The 

proposed architecture leverages the local processing capabilities of edge 

gateways, integrates efficient machine learning models for anomaly 

detection, and implements rapid response mechanisms. By focusing on 

resource efficiency and effective threat neutralization close to the source, 

the system aims to safeguard the integrity and availability of critical 

industrial processes. This paper outlines the system’s main components, 

highlights its lightweight design, and discusses ongoing challenges, 

providing a foundational framework for enhancing IIoT security against 

the growing landscape of cyber threats. 
  

1. Introduction  

The Industrial Internet of Things (IIoT) is 

revolutionizing industries such as 

manufacturing, energy, transportation, and 

critical infrastructure by extending the core 

concepts of IoT into these sectors [1]. Through 

the integration of sensors, actuators, control 

systems, and advanced data analytics, IIoT 

enables unprecedented automation, predictive 

maintenance, remote monitoring, and 

operational efficiency. However, as operational 

technology (OT) merges with information 

technology (IT) in IIoT environments, the 

resulting interconnected systems become 

increasingly complex and exposed to a wide 

range of cyber threats [2].  

Among these threats, Distributed Denial of 

Service (DDoS) attacks are particularly 

concerning for IIoT infrastructure. Unlike 

attacks focused on stealing data or conducting 

espionage, DDoS attacks flood systems or 

networks with excessive traffic, making them 

inaccessible to legitimate users. In the context 

of IIoT, the impact of a successful DDoS attack 

can be severe, potentially causing real-time 

control processes to fail and halt production, 

compromising safety systems and leading to 

physical or environmental harm, disrupting the 

flow of critical sensor data needed for decision-

making, and resulting in significant financial 

losses due to downtime and recovery efforts [3]. 

The specific nature of IIoT environments—

characterized by the need for real-time, 
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deterministic operations, the presence of legacy 

devices with minimal security, and often remote 

or harsh deployment conditions—makes 

traditional, centralized security solutions less 

effective or even impractical. For example, 

cloud-based DDoS mitigation can introduce 

unacceptable delays for time-sensitive 

industrial processes, and routing all traffic 

through the cloud can be costly in terms of 

bandwidth [4]. Additionally, installing heavy 

security software on IIoT devices is often not an 

option due to their limited resources. 

Given these challenges, there is a clear need 

for lightweight, edge-based security solutions 

that can detect and mitigate DDoS attacks right 

at the network’s edge—on gateways or local 

processing units. By moving security 

intelligence closer to where data is generated 

and control actions are taken, these systems can 

provide real-time protection, minimize network 

overhead, and serve as a first line of defense 

before threats reach critical controllers or cloud 

infrastructure. 

In this paper, we introduce a lightweight, 

edge-based security system designed 

specifically to counter DDoS attacks in IIoT 

environments. Our main contributions are as 

follows: 

• To present an architectural framework for an 

edge-focused DDoS mitigation system 

tailored to IIoT; 

• To outline the lightweight design principles 

and intelligent anomaly detection methods 

suitable for resource-limited edge devices; 

• To discuss strategies for real-time response 

and mitigation that can be executed directly 

at the edge; 

• To identify key challenges and suggest 

future research directions for enhancing IIoT 

security against DDoS threats; 

The rest of this paper is organized as 

follows: Section 2 reviews IIoT security and 

current DDoS mitigation approaches. Section 3 

details the proposed lightweight edge-based 

security system. Section 4 covers performance 

evaluation and ongoing challenges. Finally, 

Section 5 concludes the paper. 

2. Background and Related Work 

2.1. Industrial IoT (IIoT) Infrastructure and 

Vulnerabilities 

Industrial IoT (IIoT) systems are 

fundamentally different from traditional IT and 

consumer IoT networks because of their critical 

operational roles and strict performance 

demands [5]. These environments are 

characterized by the need for real-time, 

deterministic operations—such as motion 

control and robotic processes—where even a 

millisecond of delay can result in catastrophic 

failures. IIoT infrastructures often incorporate 

legacy industrial control systems (ICS) and 

supervisory control and data acquisition 

(SCADA) components, many of which were 

not originally designed with modern 

cybersecurity considerations, leaving them 

particularly vulnerable to attacks [6]. 

Communication within IIoT frequently depends 

on proprietary industrial protocols like Modbus, 

OPC UA, and PROFINET, which may lack 

strong security features. Moreover, 

cyberattacks targeting IIoT can have direct 

physical consequences, potentially causing 

equipment damage, environmental harm, or 

risks to human safety. These unique 

characteristics make IIoT environments 

especially susceptible to Distributed Denial of 

Service (DDoS) attacks, which can disrupt 

network availability, compromise the integrity 

of control systems, or target specific application 

services running on industrial controllers [7]. 

2.2. DDoS Attacks in IIoT Context 

DDoS attacks are designed to overwhelm a 

target system by flooding it with excessive 

traffic, depleting essential resources such as 

bandwidth, CPU, memory, and connection 

tables, ultimately rendering the system 

unavailable. In the context of IIoT, these attacks 

can take several forms: volumetric attacks that 

saturate network bandwidth through methods 

like UDP or ICMP floods [8]; protocol attacks 

that exploit vulnerabilities in network protocols, 

such as SYN floods or fragmented packet 

attacks [9]; and application-layer attacks that 

focus on specific application services, often 

using seemingly legitimate requests to drain 

server resources, for example, HTTP floods 

directed at OPC UA servers [10]. In IIoT 

environments, even low-volume, highly 

targeted DDoS attacks aimed at critical control 

messages or specific device endpoints can cause 

disproportionately severe disruptions. 
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2.3. Traditional DDoS Mitigation Approaches 

and Their Limitations for IIoT 

Cloud-based mitigation services work by 

redirecting traffic to scrubbing centers in the 

cloud, which can be highly effective against 

large-scale volumetric attacks targeting IT 

infrastructure. However, for real-time IIoT 

operations, these services often introduce 

unacceptable latency and require all IIoT traffic 

to be routed through external networks, raising 

significant privacy and compliance issues [11]. 

On-premise DDoS appliances, which are 

hardware solutions installed at the network 

perimeter, offer lower latency compared to 

cloud-based options but tend to be costly, 

resource-intensive, and may struggle to scale 

effectively against the vast array of potential 

attack vectors present in IIoT environments 

without substantial investment [12]. Traditional 

intrusion detection systems (IDS), whether 

signature-based or anomaly-based, are also 

commonly used. Signature-based IDSs depend 

on known attack patterns, making them 

ineffective against new, previously unseen 

DDoS variants. Anomaly-based IDSs, which 

often utilize machine learning (ML), can 

identify novel attacks but typically demand 

considerable computational resources for both 

training and inference. This can result in high 

power consumption and an increased risk of 

false positives, which may disrupt critical 

industrial processes [13]. As a result, deploying 

such systems directly on resource-constrained 

IIoT edge devices is often impractical. 

2.4. Role of Edge Computing in IIoT Security 

Edge computing presents a promising 

approach to strengthening IIoT security by 

positioning computational resources closer to 

where data is generated [14]. This proximity 

allows for real-time threat analysis and 

mitigation without the delays associated with 

sending data to the cloud, significantly reducing 

latency. By processing information locally, 

edge computing also helps conserve bandwidth 

by minimizing the amount of data that needs to 

be transmitted to the core network. 

Additionally, it enables early detection of 

malicious activity by identifying abnormal 

patterns right at the point of entry. Furthermore, 

edge computing facilitates rapid isolation and 

containment of compromised devices or 

network segments, helping to prevent attacks 

from spreading laterally across the IIoT 

environment. 

Recent studies have begun to investigate the 

potential of edge-based security solutions for 

IoT environments. For instance, [15] introduced 

an edge-based intrusion detection system that 

utilizes lightweight machine learning 

techniques for general IoT networks. Another 

study [16] explored the application of federated 

learning at the edge to enable distributed 

anomaly detection, a method that holds promise 

for adapting to DDoS scenarios. Meanwhile, 

[17] examined AI-driven anomaly detection 

approaches for IIoT, though these efforts do not 

always prioritize lightweight deployment 

specifically tailored for DDoS mitigation on 

resource-constrained edge devices. Despite 

these advancements, there is still a notable gap 

in the development of a comprehensive, 

lightweight, edge-based security system that is 

purpose-built for DDoS mitigation in IIoT, 

taking into account the sector’s unique real-time 

operational demands and limited resources. 

3. Proposed Lightweight Edge-Based 

Security System Design  

To tackle the specific challenges of DDoS 

mitigation in IIoT environments, we propose a 

lightweight, edge-based security system that 

brings together intelligent monitoring, anomaly 

detection, and rapid response functions directly 

on edge gateways. This approach is carefully 

designed to deliver effective real-time 

protection while remaining efficient and 

practical for deployment in resource-

constrained settings. 

3.1. System Architecture 

The proposed system functions at the edge 

layer, typically running on dedicated edge 

gateways that are strategically placed at the 

interface between IIoT devices or controllers 

and the wider enterprise or cloud network. This 

setup is depicted in the conceptual architecture 

shown in Figure 1. 

IIoT devices and controllers, such as 

industrial sensors, actuators, PLCs, and RTUs, 

are responsible for generating and receiving 

operational data within the system. The edge 

gateway, equipped with networking 

capabilities, serves as a local computing device 

that hosts the Lightweight Security Module, 

acting both as a data aggregation point and the 
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first line of defense against potential threats. At 

the heart of this setup is the Lightweight 

Security Module, which provides the core 

intelligence for monitoring and protection 

directly on the edge gateway. Supporting this 

architecture, 5G and other network 

infrastructure deliver high-speed, low-latency 

connectivity for IIoT traffic and facilitate 

communication between the edge and the cloud. 

The cloud layer, meanwhile, is utilized for 

global threat intelligence, long-term data 

storage, and centralized management and 

reporting. 

 

Figure 1. Edge-Based Security System Design 

3.2. Components of the Lightweight Security 

Module 

a. Traffic Monitoring and Feature Extraction 

The system begins with packet capture and 

flow export, continuously monitoring all 

incoming and outgoing traffic on the edge 

gateway by capturing packet headers or 

generating flow records similar to NetFlow or 

IPFIX, all while operating at a low level to keep 

overhead minimal [18]. Instead of performing 

deep packet inspection on every packet, the 

lightweight feature extraction component 

focuses on gathering only the most essential 

features needed for effective DDoS detection. 

These features include packet-level details such 

as source and destination IP addresses, port 

numbers, protocol types (TCP, UDP, ICMP), 

and packet sizes; flow-level metrics like the 

number of packets or bytes per flow, flow 

duration, connection states, and the distribution 

of flags (such as SYN and ACK for TCP); and 

time-series characteristics, including the rate of 

new connections, packets per second, and the 

entropy of source or destination IPs and ports 

over short time intervals [19]. Additionally, the 

system incorporates IIoT protocol awareness by 

performing basic parsing of common industrial 

protocols like Modbus TCP and OPC UA, 

enabling it to identify control messages and 

detect anomalies specific to these protocols, 

such as an unusually high frequency of Write 

Coils requests. 

b. Lightweight Anomaly Detection Engine 

(ML-Based) 

The primary goal of this component is to 

detect deviations from typical IIoT traffic 

patterns that could signal a DDoS attack, 

including previously unseen, zero-day variants. 

To achieve this, the system prioritizes machine 

learning models that have low computational 

and memory requirements, making them 

suitable for deployment at the edge. For 

identifying known types of DDoS attacks, 

lightweight supervised learning algorithms such 

as Decision Trees (DT), Random Forests (RF), 

or Support Vector Machines (SVM) with 

optimized kernels are used, as they offer faster 

inference times compared to deep neural 

networks [20]. To uncover novel or unknown 

DDoS patterns, unsupervised learning methods 

like Isolation Forest, One-Class SVM, or k-

Means Clustering are employed to spot outliers 

in the extracted feature sets, eliminating the 

need for pre-labeled attack data [21]. The 

models are further optimized through 

techniques such as quantization, which reduces 

the precision of model weights (for example, 

from 32-bit floats to 8-bit integers) to decrease 

model size and accelerate inference without 

significantly sacrificing accuracy [22], and 

pruning, which removes unnecessary 

connections or neurons from the model. 

Additionally, online or continual learning is 

incorporated to allow the model to adapt to 

changing IIoT traffic patterns and emerging 

attack types without the need for complete 

retraining [23]. Finally, dynamically adjusted 

thresholds for anomaly scores are used to 

minimize false positives, which is especially 

important in the context of IIoT operations. 

c. DDoS Mitigation and Response 

When a DDoS attack is detected, the system 

can take immediate action at the local level by 

enforcing Access Control Lists (ACLs) or 

firewall rules to block malicious source IP 

addresses or specific traffic patterns [24]. It can 

also implement rate limiting to throttle the flow 

of suspicious connections or packets, thereby 

protecting targeted IIoT devices or services. 
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Additionally, the system is capable of filtering 

out packets that match known attack signatures 

or that exceed predefined thresholds. To ensure 

coordinated defense, alerts are generated and 

sent to central security operations in the cloud 

layer, providing detailed information about the 

detected attack and the mitigation steps taken. 

In more severe scenarios, the system can initiate 

network segmentation to isolate the affected 

IIoT subnet, effectively containing the attack 

and preventing it from spreading to other 

critical parts of the infrastructure. 

d. Local Resource Manager 

The system continuously monitors the edge 

gateway’s CPU, memory, and power usage to 

ensure that the security module does not 

negatively impact the performance of the 

industrial applications it is designed to protect. 

It also dynamically adjusts the level of 

monitoring and anomaly detection based on 

current resource availability, always 

prioritizing the smooth operation of critical IIoT 

processes. 

3.3. Lightweight Design Principles 

The "lightweight" nature of the system is 

achieved through several deliberate design 

choices. First, data processing is kept 

minimalist by focusing only on the essential 

features needed for DDoS detection, rather than 

performing exhaustive deep packet inspection. 

The machine learning models used are carefully 

selected and optimized to ensure low resource 

consumption. Event-driven processing is 

employed, meaning data is only analyzed when 

specific triggers or anomalies are detected, 

which helps reduce continuous overhead. The 

system also adopts a stateless or low-state 

design, minimizing the amount of state 

information stored on the edge gateway for 

greater efficiency. For highly critical 

deployments, optional dedicated hardware 

acceleration—such as tinyML or specialized AI 

accelerators—can be used to significantly boost 

ML inference performance while keeping 

power usage low. By embedding these 

capabilities directly at the edge, the proposed 

system delivers a vital, real-time defense layer 

against DDoS attacks, helping to protect the 

operational integrity and safety of IIoT 

infrastructure. 

4. Performance Evaluation and Challenges 

The effectiveness of the proposed 

lightweight edge-based security system for 

DDoS mitigation in IIoT needs to be thoroughly 

assessed using key performance indicators, 

while also taking into account the practical 

challenges that may arise during real-world 

deployment. 

4.1. Key Performance Metrics 

Key performance indicators for evaluating 

the proposed system include the Detection Rate 

(DR) or True Positive Rate (TPR), which 

measures the percentage of actual DDoS attacks 

accurately identified. Equally important is the 

False Positive Rate (FPR), representing the 

proportion of legitimate traffic or normal IIoT 

operations mistakenly flagged as attacks; 

keeping this rate low is essential to prevent 

unnecessary disruptions to critical processes 

[25]. Mitigation Time, or the interval between 

attack detection and the execution of mitigation 

actions, must be extremely short—ideally 

within milliseconds—to meet real-time IIoT 

requirements. Resource consumption, including 

CPU, memory, and power usage, is another 

crucial metric, as the security module must 

remain lightweight to be practical for edge 

deployment. Additionally, Throughput Under 

Attack assesses how much legitimate IIoT 

traffic the gateway can process and forward 

during a DDoS incident, while Latency Impact 

measures any extra delay the security module 

introduces to normal IIoT communications. 

Finally, Scalability evaluates the system’s 

ability to maintain its performance as the 

number of IIoT devices, traffic volume, and the 

scale of DDoS attacks grow. 

4.2. Evaluation Methodology 

To thoroughly evaluate the system, a 

combination of testbed simulation and real 

hardware deployment is recommended. IIoT-

specific network simulators, such as OMNeT++ 

or Mininet-WiFi configured with industrial 

protocols, can be used to model IIoT 

infrastructure, generate realistic traffic, and 

simulate a variety of DDoS attack scenarios. 

For more precise measurements of resource 

consumption and latency, the system should 

also be tested on a physical edge gateway 

connected to actual IIoT devices like PLCs and 

sensors in a controlled environment. 

Additionally, training and testing the machine 

learning models require datasets that accurately 
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represent both normal IIoT operations and a 

range of DDoS attack patterns targeting IIoT 

protocols. However, the scarcity of publicly 

available IIoT datasets presents a significant 

challenge in this area [26]. 

4.3. Persistent Challenges 

There are several IIoT-specific constraints 

that must be carefully considered. First, real-

time determinism is essential—the security 

system cannot introduce unpredictable delays 

or jitters that might disrupt critical control 

loops, so all security operations must be both 

highly predictable and extremely fast. Second, 

many IIoT devices rely on outdated software or 

firmware and are unable to support complex 

security agents, meaning the edge gateway must 

provide robust protection without requiring any 

modifications to these legacy devices. Third, 

the safety-critical nature of IIoT environments 

means that false positives, which could result in 

legitimate traffic being blocked, have the 

potential to cause serious safety hazards, such 

as failures in emergency shutdown procedures. 

Striking the right balance between security and 

operational safety is therefore crucial. Finally, 

the use of proprietary protocols in IIoT makes 

deep packet inspection for DDoS detection both 

complex and resource-intensive, which can 

conflict with the system’s goal of remaining 

lightweight. 

Balancing the need for lightweight operation 

with the effectiveness of DDoS detection 

presents a significant challenge. Achieving high 

detection accuracy for complex and evolving 

DDoS attacks is difficult when working within 

strict resource limitations, as overly simplified 

machine learning models may fail to identify 

more sophisticated threats. Additionally, there 

is a delicate trade-off between minimizing false 

positives—which is crucial in IIoT 

environments to avoid disrupting essential 

operations—and ensuring a high detection rate 

across all types of attacks. Careful tuning and 

optimization are required to strike the right 

balance between these competing priorities. 

One major challenge is the limited 

availability of public, high-quality datasets that 

accurately represent IIoT network traffic, 

particularly those that include real-world DDoS 

attack scenarios involving industrial protocols 

and environments. This scarcity makes it 

difficult to train and validate machine learning 

models effectively [27]. Additionally, while 

simulated attack data can be useful, it often fails 

to capture the full complexity and subtlety of 

real-world threats, potentially limiting the 

robustness of the security system. 

Detecting zero-day attacks remains a 

significant challenge, as even though anomaly-

based machine learning models can identify 

previously unseen threats, their ability to catch 

highly novel or evasive DDoS techniques still 

demands ongoing research and rapid adaptation 

to emerging attack patterns. Additionally, the 

security of the edge security module itself is 

crucial, as it becomes a high-value target for 

attackers. The system must be robust against 

direct attacks, such as evasion tactics or 

attempts to tamper with the ML model, and its 

integrity should be protected, for example, by 

using trusted execution environments. Finally, 

as the deployment of edge gateways scales up, 

effectively coordinating their threat intelligence 

and mitigation actions—such as sharing 

blacklists of malicious IP addresses—without 

causing excessive communication overhead 

presents another layer of complexity. 

Overcoming these challenges calls for a 

multidisciplinary approach, bringing together 

knowledge from cybersecurity, machine 

learning, industrial control systems, and 

network engineering. As IIoT threats continue 

to evolve, it is essential to develop adaptive and 

resilient security solutions that can effectively 

respond to new and emerging attack techniques. 

5. Conclusion  

The integration of industrial control 

systems with the Internet of Things, known as 

Industrial IoT (IIoT), has greatly improved 

efficiency but also created new cybersecurity 

risks. DDoS attacks are especially dangerous 

for IIoT because they can disrupt real-time 

operations, threaten safety, and even cause 

physical damage. Traditional, centralized 

methods for stopping DDoS attacks often do not 

meet the strict needs of IIoT, such as low 

latency and limited resources. To address this, 

this paper introduced a lightweight security 

system that works at the edge, close to IIoT 

devices. The system uses local processing on 

edge gateways, efficient machine learning 

models for detecting unusual activity, and quick 

response actions, all while keeping resource use 

low. 
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The paper discussed important ways to 

measure the system’s performance, like how 

well it detects attacks, how often it makes 

mistakes, how quickly it responds, and how 

much computing power it uses. There are still 

challenges, such as making sure the system does 

not interfere with critical operations, finding the 

right balance between being lightweight and 

effective, and dealing with the lack of real-

world IIoT attack data. Future research should 

focus on creating smarter and more efficient AI 

models, using collaborative learning between 

edge devices, improving system security, and 

developing standard tests for IIoT security. In 

the end, keeping IIoT systems safe will require 

ongoing, adaptive, and edge-focused security 

solutions. 
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