Dekomposisi dari Modul Yang Dibangun Secara Hingga Atas Beberapa Ring Khusus

  • Gagah Nataprawira Universitas Singaperbangsa Karawang
Keywords: daerah dedekind, daerah ideal utama, modul bebas, modul torsi, modul bebas torsi

Abstract

Penelitian ini ingin memberikan dekomposisi dari modul yang dibangun Secara hingga atas beberapa ring khusus, seperti daerah ideal utama atau daerah Dedekind.  Hasil utama dari penelitian ini mendapatkan dekomposisi modul yang dibangun secara hingga adalah jumlah langsung dari modul torsi dan modul bebas saat ring adalah daerah ideal utama.  Saat ring adalah daerah Dedekind, didapatkan  dekomposisi merupakan tambah langsung dari modul projektif dan modul torsi.

References

[1] M. S. Sauri, M. Hadijati, and N. Fitriyani, “Spline and Kernel Mixed Nonparametric Regression for Malnourished Children Model in West Nusa Tenggara,” Jurnal Varian, vol. 4, no. 2, pp. 99–108, Apr. 2021, doi: 10.30812/varian.v4i2.1003.
[2] M. Fahmi and N. Rosli, “Comparative study of Stochastic Taylor Methods and Derivative-Free Methods for Stochastic Differential Equations,” in Journal of Physics: Conference Series, Aug. 2021, vol. 1988, no. 1. doi: 10.1088/1742-6596/1988/1/012005.
[3] R. Utami, M. Hadijati, and I. G. A. W. Wardhana, “Intervention Model of IDX Finance Stock for the Period May 2010 - May 2020 Due to the Effects of the Corona Virus,” IOP Conference Series: Materials Science and Engineering, vol. 1115, no. 1, p. 012057, 2021, doi: 10.1088/1757-899x/1115/1/012057.
[4] I. G. A. W. Wardhana, P. Astuti, and I. Muchtadi-Alamsyah, “On almost prime submodules of a module over a principal ideal domain,” JP Journal of Algebra, Number Theory and Applications, vol. 38, no. 2, pp. 121–128, Apr. 2016, doi: 10.17654/NT038020121.
[5] I. G. A. W. Wardhana and P. Astuti, “Karakteristik Submodul Prima Lemah dan Submodul Hampir Prima pada Z-Modul Zn,” Jurnal Matematika & Sains, vol. 19, no. 1, pp. 16–20, 2014.
[6] I. G. A. W. Wardhana, N. W. Switrayni, and Q. Aini, “Eigen Mathematics Journal Submodul Prima Lemah dan Submodul Hampir Prima Pada Z-modul M2(Zn),” Eigen Mathematics Journal, vol. 1, no. 1, pp. 28–30, 2018, Accessed: Dec. 20, 2021. [Online]. Available: https://doi.org/10.29303/emj.v1i1.6
[7] R. Juliana, I. G. W. W. Wardhana, and I. Irwansyah, “Some Characteristics of Prime Submodules of Gaussian Integer Modulo over Integer”.
[8] M. A. Misri, H. Garminia, P. Astuti, and Irawati, “A note on bézout modules,” Far East Journal of Mathematical Sciences, vol. 99, no. 11, pp. 1723–1732, 2016, Accessed: Dec. 20, 2021. [Online]. Available: http://dx.doi.org/10.17654/MS099111723
[9] M. Ali Misri, H. Y. Garminia, and J. By Pass Perjuangan Kesambi, “GENERALIZATION OF BÉZOUT MODULES,” 2013. [Online]. Available: http://pphmj.com/journals/fjms.htm
[10] G. Elfiyanti, I. Muchtadi-Alamsyah, F. Yuliawan, and D. Nasution, “On the category of weakly U-complexes,” European Journal of Pure and Applied Mathematics, vol. 13, no. 2, pp. 323–345, 2020, doi: 10.29020/nybg.ejpam.v13i2.3673.
[11] N. Hijriati, S. Wahyuni, and I. E. Wijayanti, “Injectivity and Projectivity Properties of the Category of Representation Modules of Rings,” in Journal of Physics: Conference Series, Oct. 2018, vol. 1097, no. 1. doi: 10.1088/1742-6596/1097/1/012078.
[12] Fitriani, I. E. Wijayanti, B. Surodjo, S. Wahyuni, and A. Faisol, “Category of submodules of a uniserial module,” Mathematics and Statistics, vol. 9, no. 5, pp. 744–748, Sep. 2021, doi: 10.13189/ms.2021.090514.
[13] Irwansyah and D. Suprijanto, “Structure of linear codes over the ring Bk,” Journal of Applied Mathematics and Computing, vol. 58, no. 1–2, pp. 755–775, Oct. 2018, doi: 10.1007/s12190-018-1165-0.
[14] J. Kaewwangsakoon and S. Pianskool, “F-CS-RICKART MODULES,” JP Journal of Algebra, Number Theory and Applications, vol. 45, no. 1, pp. 29–54, Jan. 2020, doi: 10.17654/nt045010029.
[15] S. Sangwirotjanapat and S. Pianskool, “T-SMALL SUBMODULES WITH RESPECT TO AN ARBITRARY SUBMODULE,” JP Journal of Algebra, Number Theory and Applications, vol. 40, no. 1, pp. 91–112, Mar. 2018, doi: 10.17654/nt040010091.
[16] Steven and Irawati, “ON CHARACTERIZATIONS OF PRIME AND ALMOST PRIME SUBMODULES,” JP Journal of Algebra, Number Theory and Applications, vol. 40, no. 3, pp. 341–350, Jun. 2018, doi: 10.17654/nt040030341.
[17] I. G. A. W. Wardhana, N. D. H. Nghiem, N. W. Switrayni, and Q. Aini, “A note on almost prime submodule of CSM module over principal ideal domain,” Journal of Physics: Conference Series, vol. 2106, no. 1, p. 012011, Nov. 2021, doi: 10.1088/1742-6596/2106/1/012011.
[18] F. Maulana, I. G. A. W. Wardhana, and N. W. Switrayni, “Ekivalensi Ideal Hampir Prima dan Ideal Prima pada Bilangan Bulat Gauss,” EIGEN MATHEMATICS JOURNAL, vol. 1, no. 1, p. 1, Jun. 2019, doi: 10.29303/emj.v1i1.29.
[19] W. U. Misuki, G. A. W. Wardhana, and N. W. Switrayni, “Some Characteristics of Prime Cyclic Ideal On Gaussian Integer Ring Modulo,” 2021, doi: 10.1088/1757-899X/1115/1/012084.
[20] E. Kusniyanti, H. Garminia, and P. Astuti, “Dedekind domains and dedekind modules,” JP Journal of Algebra, Number Theory and Applications, vol. 38, no. 3, pp. 249–260, Jun. 2016, doi: 10.17654/NT038030249.
Published
2022-06-30